Biologically Active Glycosides from Asteroidea, $39^{[\pm]}$ Glycosphingolipids from the Starfish *Linckia laevigata*, 1

Isolation and Structure of a New Ganglioside Molecular Species

Masanori Inagaki, [a] Ryuichi Isobe, [b] and Ryuichi Higuchi*[a]

Keywords: Natural products / Glycosphingolipids / Gangliosides / Starfish / Linckia laevigata

A ganglioside molecular species [LLG-3 (1)] has been obtained from the water-soluble lipid fraction of the CHCl $_3$ / MeOH extract of the starfish *Linckia laevigata*. On the basis of chemical and spectroscopic findings, the structure of 1 has been elucidated. Negative-ion FABMS provided important information concerning both the structure of the sugar moiety and the molecular mass of the ganglioside. On the

other hand, positive-ion FABMS/MS of [M + Na]⁺ ions obtained in the positive-ion FABMS of the ceramide lactoside (4) derived from 1 indicated the structure of the fatty acid chain of the ceramide moiety. 1 represents a new ganglioside molecular species possessing a $2\rightarrow11$ -linked tandem-type disialosyl moiety.

In our ongoing search for biologically active glycosphingolipids from starfish, we have isolated numerous cerebrosides, ceramide-lactosides, sulfatides, and gangliosides, and some of them have biological activities. [1] In continuation of the previous studies, we have now carried out the isolation and structure elucidation of the biologically active glycosphingolipids from the starfish *Linckia laevigata* (Aohitode in Japanese), with the objective of searching for lead compounds for new medicines. We describe here the isolation and structure determination of a new ganglioside from the whole bodies of *L. laevigata*.

A water-soluble lipid fraction, obtained from the CHCl₃/MeOH extract of the whole bodies of *L. laevigata*, was subjected to reversed-phase followed by normal-phase column chromatography, and then to Sephadex LH-20 column chromatography to give a ganglioside molecular species, LLG-3 (1). The isolated material gave a single spot upon normal-phase thin-layer chromatography (TLC).

In its IR spectrum, **1** exhibits strong hydroxy (3400 cm⁻¹) and amide (1650, 1560 cm⁻¹) absorptions, while the ¹³C-NMR spectrum features the characteristic signals of a phytosphingosine-type ceramide possessing a 2-hydroxy fatty acid function and a sugar moiety at C-1 (Table 1) [δ = 70.3 (C-1), 51.6 (C-2), 75.6 (C-3), 72.7 (C-4), 176.2 (C-1') and 72.7 (C-2')]. Furthermore, **1** is thought to possess a *normal*^[2] type of side chain, mainly, since the carbon-atom signals due to the terminal methyl groups were observed at δ = 14.5 in the ¹³C-NMR spectrum. The signals due to a

small amount of an *ante-iso*[2] type of terminal methyl groups are observed at $\delta = 11.8$ (terminal methyl group) and 19.6 (branched methyl group).

The 13 C-NMR spectrum of **1** also features a signal due to a methoxy carbon atom at $\delta = 58.6$, along with those of four anomeric carbon atoms at $\delta = 100.2$, 101.3, 104.9, 105.2, two of which ($\delta = 100.2$, 101.3) are quaternary carbon signals and thus indicate the presence of two sialic acid residues. The negative-ion fast-atom bombardment mass spectrum (FABMS) exhibits a series of molecular ion peaks due to anionized cluster ions $[M - H]^-$ at m/z = 1576, 1590, and 1604. Therefore, **1** is suggested to be a molecular species of a phytosphingosine-type ganglioside possessing a 2-hydroxy fatty acid moiety, a methoxy group, and four monosaccharide units. The fatty acid and long-chain base (phytosphingosine) constituents, as well as the structure of the oligosaccharide moiety of **1**, were determined as follows.

The structure of the ceramide moiety was investigated first. 1 was hydrolyzed with 5% aq. AcOH to give ceramide dihexoside (4, Scheme 1). In the positive-ion FABMS of 4, a series of $[M + Na]^+$ ions of molecular species was observed in the range m/z = 970-1050, as shown in Scheme 2a. When positive-ion FABMS/MS of each of the $[M + Na]^+$ ions were measured, prominent fragment ions originating from cleavage of the amide bond, for example at m/z = 650 from the $[M + Na]^+$ ion with m/z = 1002, were observed (Scheme 2b). [3] On the basis of these $[M + Na]^+$ ions and the fragment ions derived therefrom, we could deduce the fatty acid and long-chain base components of each molecular species in 4, as shown in Table 2.

The stereochemistry of the ceramide moiety was determined as follows. The 1 H- and 13 C-NMR spectra of compound **4** closely resemble those of the synthetic lactosyl ceramide, (2S,3S,4R)-1-O-[O- β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl]-2-[(2R)-2-hydroxytetracosanoylamino]-

Towa University,

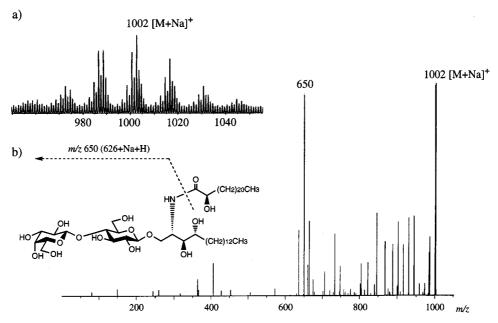
 [[]a] Faculty of Pharmaceutical Sciences, Kyushu University,
 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
 Fax: (internat.) + 81-92/642-6639
 E-mail: higuchi@shokka.phar.kyushu-u.ac.jp

[[]b] Department of Industrial Chemistry, Faculty of Engineering,

¹⁻¹⁻¹ Chikushigaoka, Minami-ku, Fukuoka, 815-0036, Japan [*] Part 38: S. Kawatake, M. Inagaki, T. Miyamoto, R. Isobe, R. Higuchi, *Eur. J. Org. Chem.* **1999**, 765-769, preceding paper.

Scheme 1

Table 1. 13 C-NMR spectral data of LLG-3(1), LLG-3 CDH(4) and synthetic lactosyl ceramide(5) [δ values in C_5D_5N/D_2O (95:5) (1), C_5D_5N (4, 5)]


С		1	4	5 ^[a]	
ceramide	1	(t)	70.3	70.2	70.3
	2	(d)	51.6	51.6	51.6
	3	(d)	75.6	75.8	75.8
	4	(d)	72.7	72.4 *	72.6
	1'	(s)	176.2	175.5	175.6
	2'	(d)	72.7	72.5 *	72.6
-CH ₃		(q)	14.5	14.3	14.3
Glc ·	1	(d)	104.9	105.0	105.0
	2	(d)	74.5	74.6	74.6
	3	(d)	76.4	76.5	76.5
	4	(d)	81.5	81.6	81.7
	5	(d)	77.1	77.2	77.2
	6	(t)	62.0 *	62.0	62.1
Gal	1	(d)	105.2	105.6	105.8
	2	(d)	72.7	72.3	72.4
	3	(d)	81.9	75.1	75.2
	4	(d)	70.3	70.0	70.1
	5	(d)	76.4	76.5	76.5
	6	(t)	62.1 *	62.0	62.0
NeuGc	1	(s)	173.9 **		
	2	(s)	100.2 ***		
	3	(t)	42.7		
-NHCOCH2O-		(s)	174.3 **		
NeuAc	1	(s)	173.9 **		
	2	(s)	101.3 ***		
	3	(t)	42.7		
-NHCOCH3		(s)	174.3 **		
-OCH ₃		(q)	58.6		

*.**.***: Assignments may be interchanged in each vertical column. - $^{[a]}$ Data from ref. $^{[4]}$

1,3,4-hexadecanetriol (5)^[4] (Table 1). This fact, together with the similar optical rotations of 4 (+12.9) and 5 (+8.0), indicates that 4 must be a ceramide lactoside having the same absolute configuration of the core structure as 5 (C-2, C-3, C-4, C-2', and lactose). Therefore, the absolute configuration of the ceramide part of the parent ganglioside 1 must be 2S,3S,4R,2'R (Scheme 1).

Next, the structure of the sugar moiety of 1 was examined. In the negative-ion FABMS, the molecular ion and fragment ion peaks arising from cleavage of the glycoside linkages of the major component are observed at m/z =1590, 1285, 978, 816, and 654 (Scheme 3). Since the presence of a lactosyl ceramide moiety had already been established, the linear carbohydrate sequence of 1 could be deduced as being O-Me-NeuAc \rightarrow NeuGc \rightarrow β -Galp-(1 \rightarrow 4)- β -Glcp. Methylation of 1 according to the Hakomori method^[5] afforded the permethylated product **2**. Partially methylated alditol acetates prepared from 2 were analyzed by GC MS and identified as the alditols derived from 3linked hexopyranose (S-1) and 4-linked hexopyranose (S-2) (Scheme 1). The structure of the sialic acid moiety was established as follows. Since 1 has a methoxy group on its terminal sialic acid residue, pertrideuteriomethylated product 3 was prepared, then methanolyzed, and finally acetylated. The acetylated partially trideuteriomethylated sialic acid derivatives (S-3 and S-4) were then examined by means of GC MS and gave characteristic fragment ion peaks (Scheme 4) that indicated the presence of terminal 8-O-Me-NeuAc and 11-linked NeuGc in a ratio of ca. 1:1.

On the basis of the above evidence, the tetrasaccharide moiety of 1 must be 8-O-Me-NeuAc-(2 \rightarrow 11)-NeuGc-(2 \rightarrow 3)- β -Galp-(14)- β -Glcp. The configurations of the sialic acid residues (NeuAc and NeuGc) are presumed to be α since their anomeric carbon signals are in good agreement with those of known gangliosides possessing α -linked sialic acids. [6]

Scheme 2. a) Positive-ion FABMS of 4; b) positive-ion FABMS/MS of [M + Na]⁺ ion obtained in the positive-ion FABMS of 4

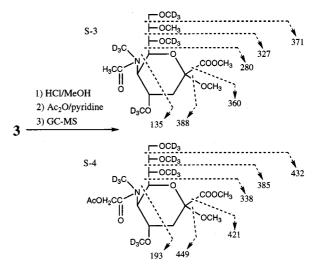

Scheme 3. Negative-ion FABMS fragmentation of the major component of 1

Table 2. Fatty acid and long-chain base component of molecular species in 4

[M+Na] ⁺	Fatty Acid	Long-Chain-Base	
986	α -OH docosanoic acid (C _{22:0})	C _{17:1} -phytosphingosine	
988	α -OH docosanoic acid (C _{22:0})	C _{17:0} -phytosphingosine	
1000	α -OH tricosanoic acid (C _{23:0})	C _{17:1} -phytosphingosine	
1002	α -OH tricosanoic acid (C _{23:0})	C _{17:0} -phytosphingosine	
1016	α -OH tricosanoic acid ($C_{23:0}$)	C _{18:0} -phytosphingosine	

Consequently, if Glc, Gal, NeuAc, and NeuGc are assumed to belong to the most commonly found D series, then LLG-3 (1) is the O-8-O-methyl (N-acetyl- α -D-neuraminosyl)-(2 \rightarrow 11)-O-(N-glycolyl- α -D-neuraminosyl)-(2 \rightarrow 3)-O- β -D-galactopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranoside of a ceramide composed of heterogeneous phytosphingosine and 2-hydroxy fatty acid units. The major components of the fatty acid and long-chain base moieties of 1 are (2R)-2-hydroxy-tricosanoic acid and (2S,3S,4R)-2-amino-1,3,4-heptadecanetriol (Scheme 1).

To the best of our knowledge, this is the first time that a ganglioside has been isolated and characterized from the starfish L. laevigata. Furthermore, compound 1 represents a new ganglioside molecular species, and is only the second starfish ganglioside found to contain a $2\rightarrow11$ -linked tan-

Scheme 4. EIMS fragmentation of S-3 and S-4

dem-type disialosyl moiety, after a ganglioside from *Aphela-sterias japonica*. ^[7] The biological activities of **1** will be examined in due course.

Experimental Section

Melting points: Micro melting point apparatus (Yanaco MP-3); uncorrected values. — IR spectra: Jasco IR-700 infrared spectrophotometer. — Optical rotations: Jasco Dip-370 digital polarimeter at 28 °C. — NMR spectra: Instrumentation and techniques were as described in the previous paper, ^[6] except that the ¹³C-NMR spec-

trum was measured with a Jeol GX-270 spectrometer. - FAB MS and FAB MS/MS: Jeol JMS-SX/SX102A four-sector-type tandem mass spectrometer of BE/BE geometry [xenon atom beam: 5 kV, ion-source accelerating potential: 10 kV, matrix: HMPA/TEG (negative-ion mode), mNBA/NaCl (positive-ion mode)]. The [M + Na]⁺ ions were selected as precursor ions and were then subjected to high-energy (10 kV) collision with argon molecules in the third field-free region. The argon pressure was sufficient to attenuate the primary ion beam by 50%. The fragment ions were dispersed by a second spectrometer and CID spectra were recorded. - GC MS: Shimadzu QP-1000 [EI mode; ionization potential: 70 eV; separator and ion-source temperature: 250°C; column: Shimadzu CBP-10-W12-100 (0.53 mm \times 12 m); carrier gas: He (30 mL/min)].

Separation of LLG-3 (1): Whole bodies of the starfish Linckia laevigata (wet weight 18 kg), collected at Okinawa, Japan, in May 1995, were chopped and extracted with CHCl₃/MeOH (1:3, 15 L) and then further extracted with CHCl₃/MeOH (1:2, 2×12 L). The combined extracts were concentrated in vacuo to give a condensed extract (1 L). This was added to H₂O (1 L) and the resulting mixture was extracted with AcOEt/nBuOH (2:1, 3 × 1 L) in order to separate less polar lipids. The aqueous layer was further extracted with nBuOH saturated with H_2O (3 × 500 mL) to remove saponins, and the remaining aqueous phase was concentrated in vacuo to give a brown syrup (470 g). This syrup was added to 60% MeOH (2 L) and chromatographed on Cosmosil 140C₁₈-PREP (reversedphase) [solvent 60%, 80%, 100% MeOH, and CHCl₃/MeOH (3:7)] to give four fractions. The crude glycosphingolipid fraction (100% MeOH and CHCl₃/MeOH eluate, 3.9 g) was further chromatographed on silica gel [CHCl₃/MeOH/H₂O (6:4:0.5 \rightarrow 6:4:0.7 \rightarrow 6:4:1)] and then on Sephadex LH-20 [CHCl₃/MeOH/H₂O (6:4:1)] to afford 1 (58 mg). 1 showed a single spot upon TLC on silica gel [solvent CHCl₃/MeOH/H₂O (6:4:1)], $R_f = 0.42$.

LLG-3 (1): Amorphous powder; m.p. 245-250°C. - IR (KBr): $\tilde{v} = 3400 \text{ cm}^{-1} \text{ (OH)}, 1650, 1560 \text{ (amide)}. - \text{Negative-ion FABMS:}$ $m/z = 1576, 1590, 1604 [M - H]^{-}, 1285, 978, 816, 654 (fragment)$ ions of major component, see Scheme 4). - ¹³C NMR: See Table 1.

Partial Hydrolysis of 1: Compound 1 (15 mg) was heated with 5% aq. AcOH (8 mL) at 90°C for 4 h. The mixture was then extracted with AcOEt/nBuOH (3:1), the organic layer was concentrated in vacuo, and the residue was chromatographed on silica gel [CHCl₃/ MeOH/H₂O (8:2:0.2)] to give 4 (3.5 mg); $[\alpha]_D = +12.9$ (c = 0.32in CHCl₃/MeOH, 1:1). Compound 4 was identified as a ceramidelactoside by comparison [1H- and 13C-NMR data (Table 1)] with the synthetic ceramide-lactoside 5 {ref. [4]: $[\alpha]_D = +8.0$ (c = 0.2 in CHCl₃/MeOH, 1:1)}.

Methylation (Trideuteriomethylation) of 1 (Hakomori Method): Compound 1 (ca. 5 mg) was treated with NaH (20 mg) and CH₃I (CD₃I, 0.1 mL) in DMSO (1 mL) according to the Hakomori method. The reaction mixture was subsequently diluted with H₂O and extracted with CHCl₃. The combined CHCl₃ extracts were washed with H₂O, dried with Na₂SO₄, and the solvent was evaporated in vacuo. The residue was chromatographed on silica gel [CHCl₃/acetone (2:1)] to give **2** (**3**) (ca. 1 mg).

Preparation and GC-MS Analysis of Partially Methylated Alditol Acetates from 2: Compound 2 (1 mg) was heated with 90% HCOOH/10% CF₃COOH (1:1, 1 mL) at 90 °C for 22 h in a sealed

small-volume vial. The mixture was then concentrated in vacuo, the residue was dissolved in H₂O (2 mL), and the resulting solution was treated with 28% aq. NH₃ (two drops) and NaBD₄ (10 mg). After leaving the mixture to stand at room temp. for a few hours, it was acidified with AcOH to pH = 3.5 and then concentrated in vacuo. H₃BO₃ present in the residue was removed by co-distillation with MeOH (four times). The residue was then heated with Ac₂O/ C₅H₅N (1:1, 0.5 mL) at 70°C for 30 min. After concentration of the mixture in vacuo, the residue obtained was extracted with CHCl₃, and the combined CHCl₃ extracts were washed with H₂O and dried (Na₂SO₄). Evaporation of the solvent left the partially methylated alditol acetates. These acetates were subjected to GC MS [column temp.: 150°C (constant)]. The results were as follows: $t_{\rm R}$ [min] = 18.5, m/z: 45, 118, 161, 234 [1,3,5-tri-O-acetyl-2,4,6tri-O-methylhexitol (S-1, derived from 3-linked hexopyranose)]; t_R [min] = 19.5, m/z: 45, 118, 233 [1,4,5-tri-O-acetyl-2,3,6-tri-O-methylhexitol (S-2, derived from 4-linked hexopyranose)].

Preparation and GC-MS Analysis of Partially Trideuteriomethylated Neuraminic Acid Derivatives from 3: Compound 3 (1 mg) was heated with 5% HCl/MeOH (1 mL) at 70°C for 4 h in a sealed small-volume vial. The reaction mixture was then concentrated in vacuo, and the residue (methanolyzate) was heated with Ac₂O/ C_5H_5N (1:1, 1 mL) at 70°C for 2 h. The resulting mixture was then concentrated in vacuo, and the residue was subjected to GC MS [column temp.: 180–250°C (rate of temp. increase 4°C/min)]: t_R [min] = 4.2, m/z: 135, 260, 280, 301, 327, 360, 371, 388 $[methyl\ N$ acetyl-N-trideuteriomethyl-2,8-di-O-methyl-4,7,9-tri-O-trideuteriomethylneuraminate (S-3, from terminal 8-O-MeNeuAc)]; t_R [min] = 8.1, m/z: 193, 318, 338, 362, 385, 421, 449 [methyl N-glycolyl-11-O-acetyl-N-trideuteriomethyl-2-O-methyl-4,7,8,9-tetra-Otrideuteriomethylneuraminate (S-4, from 11-linked NeuGc)].

Acknowledgments

We are grateful to Mr. Y. Tanaka and Ms. Y. Soeda of the Faculty of Pharmaceutical Sciences, Kyushu University, for NMR measurements. This work was supported in part by a Grant-in-Aid of Scientific Research (No. 09470486) from The Ministry of Education, Science and Culture, Japan, which is gratefully acknowledged.

S. Sugiyama, M. Honda, R. Higuchi, T. Komori, *Liebigs Ann. Chem.* **1991**, 349–356.

S. Hakomori, J. Biochem. (Tokyo) 1964, 55, 205-208.

T. Miyamoto, M. Inagaki, R. Isobe, Y. Tanaka, R. Higuchi, M. Iha, K. Teruya, *Liebigs Ann.* 1997, 931–936. G. P. Smirnova, N. K. Kochetokov, V. L. Sadovskaya, *Biochim.*

Biophys. Acta 1987, 920, 47-55.

Received September 22, 1998 [O98430]

^{[1] [1}a] R. Higuchi, K. Inagaki, T. Natori, T. Komori, S. Kawajiri, Liebigs Ann. Chem. 1991, 1–10. – [1b] R. Higuchi, K. Inukai, J. X. Zhou, M. Honda, T. Komori, S. Tsuji, Y. Nagai, Liebigs *Ann. Chem.* **1993**, 359–366.

Normal means straight chain (-CH₂CH₂CH₂CH₃), ante-iso means branched chain possessing a methyl group on the third atom of the terminal methyl carbon group

^{[-}CH₂CH(CH₃)CH₂CH₃].

[3] R. Isobe, M. Inagaki, Y. Harano, H. Sakiyama, R. Higuchi, *Chem. Pharm. Bull.* **1997**, *45*, 1611–1614.